If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.9x^2+20x-500=0
a = 1.9; b = 20; c = -500;
Δ = b2-4ac
Δ = 202-4·1.9·(-500)
Δ = 4200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4200}=\sqrt{100*42}=\sqrt{100}*\sqrt{42}=10\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{42}}{2*1.9}=\frac{-20-10\sqrt{42}}{3.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{42}}{2*1.9}=\frac{-20+10\sqrt{42}}{3.8} $
| 5(4x-7)=6x+14 | | 8y-5=3y+4 | | 1/3(2x-8)=6x+2 | | 7g-5-6-7g=0 | | 3=1/4+1x | | 6u+8-2(-4u-3)=4(u-1) | | 5n+3=6n-4 | | (X-1)(x+5)=x°+4x-2 | | 35x-15=60x+6 | | 4=5x+33 | | (X-1)(x+5)=√x+4x-2 | | 6.1x+6+1.3=0.4(x-20) | | 1/5x+14=-2-1/2x | | 2(b+3)-4(-2+b)=19 | | 8x-3=7x-9 | | m+25=35 | | Y+2=-4(x-2) | | .1(x)=4000 | | y=3(7)+44 | | a=9-15 | | -6u-6=25u-50 | | -x8+4=36 | | 9(3x×2)=3(-6x-9) | | 8+9k=48 | | 6x-10-4x=4x-7 | | w/5+2=-13 | | .2(x)=4000 | | -4y+10=-35y-12 | | 3y-10=14 | | 8(x+5)=7(x-6)=x | | -3/2(x+4)-6=7 | | 2/3b+2/5=64/3 |